The CINBAD update

29th January 2008

Ryszard Erazm Jurga Milosz Marian Hulboj

Packet Sampling Studies

- Packet Sampling Studies
 - Motivation
 - Results and Conclusions
 - Improvements and Further Directions
- Conclusions

Where are we? **CERN** openlab data sources ----------****** ****** storage analysis collectors

Why Packet Sampling Studies?

Gain some insight about packet sampling in context of the CINBAD project (both sFlow & Netflow use sampling)

- Review of various sampling methods and their applications
- Estimate network parameters from the sampled data
- Is sampling directly suitable for all the tasks?
 - traffic monitoring for billing, accounting, SLA, etc.
 - network anomaly detections, viruses, worms, etc.

Results of Packet Sampling Studies

- Over <u>100</u> technical papers read and analysed
- Thorough Technical Report available on the CINBAD website
- Collaboration between CERN and HP in the 90s
 - Peter Phaal (InMon sFlow inventor, was in HP)
 - Bjørn Blindheim (technical student at CERN in the 90s)
- Technical Report "A security auditor based on TCP transaction records"
- Many thanks to Ben Segal for sharing with us his memories about the project
- Had been successfully used in many applications:
 - Typical usage: accounting and billing
 - Deployed at Amsterdam Internet Exchange Point
 - Many hardware manufacturers support sampling (i.e. ProCurve in 3400, 3500, 5400 series)

Less Explored Packet Sampling Areas (I)

- Network Anomaly Detection
 - Very few publications on sample based analysis
 - Most of the approaches require full data or special hardware support (deep packet inspection)
- Data aggregation
 - For large high speed networks even sampling can generate terabytes of data per day
 - Raw data is almost useless, we need to build some aggregates
 - Simple statistics per interface/device/network are usually not sufficient
 - There is no agreement on what data should be stored
 - We need more dynamic representations i.e. data flows
 - Building data flows could be a challenge if we have only partial data

Less Explored Packet Sampling Areas (II)

Adaptive sampling

Facts:

- Accuracy of estimates depends on the number of samples
- Fixed level of error (invariant of the conditions) is desired
- Each network device has certain sampling limits
 However:
- Network state and traffic are dynamic
- Most of the publications deal with fixed rate sampling
- Anomaly detection is much different from typical sampling applications
- We need the best possible accuracy
- Dynamic adaptation of sampling rate would be a good solution

Need for Packet Sampling Improvements

Improve the accuracy of estimates to get more accurate anomaly detection

- Analysis of sampling sources at CERN
 - sFlow tested on CERN network devices (ProCurve and others)
 - synthetic tests with traffic generators
 - tests on production network
 - some potential issues are being discussed
- Simulating sampling methods with real network data:
 - Systematic sampling, sFlow
 - Adaptive sampling and prediction techniques
- Estimate traffic parameters and compare sampling methods
 - Mean
 - Sampling variance
 - Hurst parameter

- Φ coefficient
- Mean square error
- ...

Impact of Packet Sampling on Anomaly Detection

- Examining the packet sampling influence on Intrusion Detection Systems (Snort)
 - some anomalies only require a single sample in order to provide 100% accuracy of detection
- Traces with known attacks will be used for analysis
- Snort will be fed with full trace and sampled variants
 - examine what is sampling impact on detection ratio
 - determine what sampling approach is the best
- Does good sampling from the 'conventional' point of view give good result in anomaly detection?

• If not, then look for improvements

Need for data aggregation

- Aggregates should:
 - provide information about dynamic data flows,
 - be unaffected by partial data, (i.e. can not depend on TCP connection state)
 - be efficient for storage,
 - be scalable and easy to combine into bigger sets,
 - be useful for further analysis
- Thus we want to build various aggregates:
 - From full traces (captured on CERN's network)
 - From sampled traces (with different sampling parameters)
- Evaluate the accuracy of aggregates using different metrics

New Data Sources (I)

- Packet sampling data is not enough!
 - Data is partial
 - It cannot provide 100% accuracy
- More data to understand flow of data in the network
 - External sources provide useful information and time triggers
 - Which problem is accompanied with given traffic pattern?
 - Correlation between various data sources
- More data sources = More information
 - = Better accuracy and less false alarms

New Data Sources (II)

Central Antivirus Service at CERN

- On-line information from antivirus programs installed on Windows machines
- For each host information about antivirus actions is logged:
 - Virus name
 - Virus type
 - Action taken
 - Date of action
 - etc

CERN network monitoring tool

- Provides plenty of events and alerts about the network devices and the network state itself
- ATLAS Experiment is using some data from this tool
- We need to understand what we can actually get out of all this data

Conclusions

- Packet sampling studies were great tour of the sampling landscape and the strengths, weaknesses and opportunities for further research
- Our work will build on established research and will not duplicate topics already investigated
- First results from analysis of packet sampling methods for anomaly detection are expected in the following weeks